

Date: 09 January, 2020 (SHIFT-1) | TIME : (9.30 a.m. to 12.30 p.m)

Duration: 3 Hours | Max. Marks: 300 SUBJECT: CHEMISTRY

PART : CHEMISTRY

5. Ans. Sol.	Complex $Cr(H_2O)_6CI_n$ shows geometrical isomerism and also reacts with AgNO ₃ solution. Given : Spin only magnetic moment = 3.8 B.M. What is the IUPAC name of the complex. (1) Hexaaquachromium(III) chloride (2) Tetraaquadichloridochromium(III) chloride dihydrate (3) Hexaaquachromium(IV) chloride (4) Tetraaquadichloridochromium(IV) chloride dihydrate (2) $Cr(H_2O)_6Cl_n (\mu_{complex})_{spin} = 3.8 B.M.$ From data of magnetic moment oxidation number of Cr should be +3 Hence complex is $Cr(H_2O)_6Cl_3$. Complex shows geometrical isomerism therefore formula of complex is $[Cr(H_2O)_4Cl_2]Cl\cdot2H_2O$. It's IUPAC Name: Tetraaquadichloridochromium(III) chloride dihydrate		
6. Ans. Sol.	The electronic configuration of bivalent Europiun (Atomic Number : Xe = 54, Ce = 58, Eu = 63) (1) [Xe]4f ⁷ , [Xe]4f ¹ (3) [Xe]4f ⁷ 6s ² , [Xe]4f ¹ 5d ¹ 6s ² (1) Eu^{2+} : [Xe]4f ⁷ Ce^{3+} : [Xe]4f ¹	n and trivalent cerium res (2) [Xe]4f ⁷ 6s², [Xe]4f ¹ (4) [Xe]4f ⁷ , [Xe]4f ¹ 5d ¹ 6s	spectively is: 2
7. Ans. Sol.	Ksp of PbCl ₂ = 1.6 x 10 ⁻⁵ On mixing 300 mL, 0.134M Pb(NO ₃) ₂ (aq.) + 100 mL, 0.4 M (1) Q > Ksp (2) Q < Ksp (1) Q = [Pb ²⁺][Cl ⁻] ² = $\frac{300 \times 0.134}{400} \times \left[\frac{100 \times 0.4}{400}\right]^{2}$ = $\frac{3 \times 0.134}{4} \times (0.1)^{2}$ = 0.105 x 10 ⁻² =1.005 x 10 ⁻³ Q > Ksp	NaCl(aq.) (3) Q = Ksp	(4) Relation does not exit
8. Ans. Sol.	Which of the following can not act as both oxidis (1) H_2SO_3 (2) HNO_2 (3) As in H_3PO_4 Phosphorous is present it's max reducing agent.	ing and reducing agent 3 (3) H ₃ PO ₄ imum oxidation number	(4) H ₂ O ₂ state hence it cannot act as
9. Ans. Sol.	First Ionisation energy of Be is higher than that of Boron. Select the correct statements regarding this (i) It is easier to extract electron from 2p orbital than 2s orbital (ii) Penetration power of 2s orbital is greater than 2p orbital (iii) Shielding of 2p electron by 2s electron (iv) Radius of Boron atom is larger than that of Be (1) (i), (ii), (iii), (iv) (2) (i), (iii), (iv) (3) (ii), (iii), (iv) (4) (i), (ii), (iii) (4) Theory Based.		

10. $[PdFClBrI]^{2-}$ Number of Geometrical Isomers = n. For $[Fe(CN)_6]^{n-6}$, Determine the spin only magnetic moment and CFSE (Ignore the pairing energy) (2) 2.84 B.M., −1.6∆₀ **(3)** 0, −1.6∆₀ (4) 5.92 B.M., −2.4∆₀ (1) 1.73 B.M., −2∆₀

Ans.

(1) Sol. Number of Geometrical Isomers in square planar [PdFClBrI]²⁻ are = 3 Hence, n = 3[Fe(CN)6]3-

 $Fe^{3+} = 3d^5$, According to CFT configuration is $t_{2a}^{221}e_a^{00}$

 $\mu = \sqrt{n(n+2)}$ =1.73 B.M. $CFSE = -0.4\Delta_0 \times nt_{2g} + 0.6\Delta_0 \times n_{eg}$ $= -0.4\Delta_0 \times 5 = -2.0\Delta_0$

11. A can reduce BO₂ under which conditions.

A substance 'X' having low melting point, does not conduct electricity in both solid and liquid state. 'X' can be :
(1) Hg
(2) ZnS
(3) SiC
(4) CCl₄

Ans. (4

(4)

NH₂

Sol. $CCl_4 \rightarrow Non-conductor in solid and liquid phase.$

14. Br

(1) NaNO₂ + HCl (2) Cu₂Br₂ (3) HNO₃, Conc. H₂SO₄

The major product for above sequence of reaction is:

Ans. (2)

15. Which of the following can give highest yield in Friedel craft reaction?

Ans.

Sol. Aniline form anilinium complex with lewis acid so phenol is most reactive among the given compounds for electrophilic substitution reaction.

16.
$$\begin{array}{c} \begin{array}{c} \begin{array}{c} H_{3} O \\ H_{3}C-CH--C-CH_{3} \end{array} \xrightarrow{(1) EtMgBr/Ether} \xrightarrow{H_{2}SO_{4}} \\ (2) H_{3}O^{\oplus} \end{array} \xrightarrow{(1) H_{3}O^{\oplus}} \xrightarrow{(1) H_{3}O^$$

(i) A & D give positive test with ninhydrin because both have free carboxylic and amine groups.
(ii) C form precipitate with AgNO₃ in the lassaigne extract of the sugar because it has chlorine atoms.

(iii) B & D give positive test with sodium nitroprusside because both have sulphur atoms.

Where compound (P) gives positive lodoform test.

SECTION – 2 : (Maximum Marks : 20)

- This section contains FIVE (05) questions. The answer to each question is NUMERICAL VALUE with two digit integer and decimal upto one digit.
- If the numerical value has more than two decimal places truncate/round-off the value upto TWO decimal places.
- Full Marks : +4 If ONLY the correct option is chosen.
- Zero Marks : 0 In all other cases
- 21. Given a solution of HNO₃ of density 1.4 g/mL and 63% w/w. Determine molarity of HNO₃ solution.

Ans. 14.00

Sol. 63% w/w \longrightarrow HNO₃ solution

 $M = \frac{63 \times 1.4}{63 \times 100} \times 1000 \text{ mole/L}$ M = 14 mole/L

22. Determine degree of hardness in term of ppm of CaCO₃ of 10⁻³ molar MgSO₄ (aq).

Ans. 100.00

 10^{-3} molar MgSO₄ = 10^{-3} moles of MgSO₄ present in 1 L solutions. Sol.

$$n_{CaCO_3} \equiv n_{MgSO_4}$$

 $ppm_{(in term of CaCO_3)} = \frac{10^{-3} \times 100}{1000} \times 10^6$ ppm_(in term of CaCO₃) = 100 ppm

Determine the amount of NaCl to be dissolved in 600g H₂O to decrease the freezing point by 0.2°C 23. Given : k_f of $H_2O = 2 \text{ k-m}^{-1}$ density of $H_2O(\ell) = 1$ g/ml

01.76 Ans.

Sol.

 $\Delta T_f = 0.2^{\circ}C$ $\Delta T_{f} = ik_{f}m$

$$0.2 = 2 \times 2 \times \frac{\omega}{58.5} \times i\frac{1000}{600}$$
$$\omega = \frac{0.2 \times 58.5 \times 600}{1000 \times 4}$$
$$= \frac{1.2 \times 58.5}{40} = 01.76g$$

24. On passing a particular amount of electricity in AgNO3 solution, 108 g of Ag is deposited. What will be the volume of $O_2(g)$ in litre liberated at 1 bar, 273k by same quantity of electricity? 05.68

Ans.

 $\left(n_{Ag}\right)_{deposit} = \frac{108}{108} - 1 \text{ mole}$

 $Ag^+ + e^- \longrightarrow Ag$

1F charge is required to deposit 1 mole of Ag

$$H_2O\longrightarrow \frac{1}{2}O_2 + 2H^+ + 2e^-$$

2F charge deposit
$$\longrightarrow \frac{1}{2}$$
 mole

1F charge will deposit $\longrightarrow \frac{1}{4}$ mole

$$V_{O_2} = \frac{nRT}{P}$$

= $\frac{1}{4} \times \frac{0.08314 \times 273}{1}$
= $\frac{1}{4} \times 22.7$
 $V_0 = 5.675L$

25. Find percentage nitrogen by mass in Histamine? Ans. 37.84

Sol.

Molecular formula of Histamine is C₅H₉N₃ Molecular mass of Histamine is 111

Percentage nitrogen by mass in Histamine = $\frac{42}{111} \times 100 = 37.84$