PAPER-3 (B.E/B. TECH.) JEE (Main) 2020
 COMPUTER BASED TEST (CBT) Memory Based Questions \& Solutions

Date: 09 January, 2020 (SHIFT-1) | TIME : (9.30 a.m. to 12.30 p.m) Duration: $\mathbf{3}$ Hours | Max. Marks: $\mathbf{3 0 0}$ SUBJECT: CHEMISTRY

PART : CHEMISTRY

SECTION - 1 : (Maximum Marks : 80)
 Straight Objective Type

This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4) for its answer, out of which Only One is correct.

1. Determine wavelength of electron in $4^{\text {th }}$ Bohr's orbit ?
(1) $4 \pi \mathrm{ao}$
(2) $2 \pi \mathrm{a}_{0}$
(3) $8 \pi \mathrm{a}_{0}$
(4) $6 \pi \mathrm{a}$

Ans. (3)
Sol. $2 \pi r=n \lambda$
$2 \pi \times \frac{\mathrm{n}^{2}}{Z} \mathrm{a}_{0}=\mathrm{n} \lambda$
$2 \pi \times \frac{4^{2}}{1} \mathrm{a}_{0}=\mathrm{n} \lambda$
$\lambda=8 \pi \mathrm{a}_{0}$
2. Which of the following species have one unpaired electron each?
(1) $\mathrm{O}_{2}, \mathrm{O}_{2}^{-}$
(2) $\mathrm{O}_{2}, \mathrm{O}_{2}{ }^{+}$
(3) $\mathrm{O}_{2}{ }^{+}, \mathrm{O}_{2}^{-}$
(4) $\mathrm{O}_{2}, \mathrm{O}_{2}{ }^{2-}$

Ans. (3)
Sol. $\quad \mathrm{O}_{2}=\sigma 1 s^{2} \sigma^{*} 1 s^{2} \sigma 2 s^{2} \sigma^{*} 2 s^{2} \sigma 2 p_{z}{ }^{2} \pi 2 p_{x}{ }^{2}=\pi 2 p_{y}{ }^{2} \pi^{*} 2 p_{x}{ }^{1}=\pi 2 p_{y}{ }^{1}$
3. $\mathrm{For}_{\mathrm{Br}}^{2}(\ell)$

Enthalpy of atomisation $=x \mathrm{~kJ} / \mathrm{mol}$
Bond dissociation enthalpy of bromine $=y \mathrm{~kJ} / \mathrm{mole}$
then
(1) $x>y$
(2) $x<y$
(3) $x=y$
(4) Relation does not exist

Ans. (1)
Sol.

$\Delta \mathrm{H}_{\text {atomisation }}=\Delta \mathrm{H}_{\text {vap }}+$ Bond energy
Hence $x>y$
4. Which of the following oxides are acidic, Basic Amphoteric Respectively.
(1) $\mathrm{MgO}, \mathrm{P}_{4} \mathrm{O}_{10}, \mathrm{Al}_{2} \mathrm{O}_{3}$
(2) $\mathrm{N}_{2} \mathrm{O}_{3}, \mathrm{Li}_{2} \mathrm{O}, \mathrm{Al}_{2} \mathrm{O}_{3}$
(3) $\mathrm{SO}_{3}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{Na}_{2} \mathrm{O}$
(4) $\mathrm{P}_{4} \mathrm{O}_{10}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{MgO}$

Ans. (2)
Sol. Non-metal oxides are acidic in nature
alkali metal oxides are basic in nature
$\mathrm{Al}_{2} \mathrm{O}_{3}$ is amphoteric.
5. Complex $\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6} \mathrm{Cl}_{n}$ shows geometrical isomerism and also reacts with AgNO_{3} solution.

Given : Spin only magnetic moment $=3.8$ B.M.
What is the IUPAC name of the complex.
(1) Hexaaquachromium(III) chloride
(2) Tetraaquadichloridochromium(III) chloride dihydrate
(3) Hexaaquachromium(IV) chloride
(4) Tetraaquadichloridochromium(IV) chloride dihydrate

Ans. (2)
Sol. $\quad \mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6} \mathrm{Cl}_{n}\left(\mu_{\text {complex }}\right)_{\text {spin }}=3.8$ B.M.
From data of magnetic moment oxidation number of Cr should be +3
Hence complex is $\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6} \mathrm{Cl}_{3}$.
Complex shows geometrical isomerism therefore formula of complex is $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl} \cdot 2 \mathrm{H}_{2} \mathrm{O}$.
It's IUPAC Name: Tetraaquadichloridochromium(III) chloride dihydrate
6. The electronic configuration of bivalent Europium and trivalent cerium respectively is:
(Atomic Number : $\mathrm{Xe}=54, \mathrm{Ce}=58$, $\mathrm{Eu}=63$)
(1) $[X e] 4 f^{7},[X e] 4 f^{1}$
(2) $[\mathrm{Xe}] 4 \mathrm{f}^{7} 6 \mathrm{~s}^{2},[\mathrm{Xe}] 4 \mathrm{f}^{1}$
(3) $[X e] 4 f^{7} 6 s^{2},[X e] 4 f^{1} 5 d^{1} 6 s^{2}$
(4) $[X e] 4 f^{7},[X e] 4 f^{1} 5 d^{1} 6 s^{2}$

Ans. (1)
Sol. $\mathrm{Eu}^{2+}:[\mathrm{Xe}] 4 \mathrm{f}^{7}$
Ce^{3+} : $[\mathrm{Xe}] 4 \mathrm{f}^{1}$
7. Ksp of $\mathrm{PbCl}_{2}=1.6 \times 10^{-5}$

On mixing
$300 \mathrm{~mL}, 0.134 \mathrm{M} \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ (aq.) $+100 \mathrm{~mL}, 0.4 \mathrm{M} \mathrm{NaCl}$ (aq.)
(1) $Q>K s p$
(2) $Q<K s p$
(3) $Q=K s p$
(4) Relation does not exit

Ans. (1)
Sol. $\quad Q=\left[\mathrm{Pb}^{2+}\right]\left[\mathrm{Cl}^{-}\right]^{2}$
$=\frac{300 \times 0.134}{400} \times\left[\frac{100 \times 0.4}{400}\right]^{2}$
$=\frac{3 \times 0.134}{4} \times(0.1)^{2}$
$=0.105 \times 10^{-2}$
$=1.005 \times 10^{-3}$
Q > Ksp
8. Which of the following can not act as both oxidising and reducing agent ?
(1) $\mathrm{H}_{2} \mathrm{SO}_{3}$
(2) HNO_{2}
(3) $\mathrm{H}_{3} \mathrm{PO}_{4}$
(4) $\mathrm{H}_{2} \mathrm{O}_{2}$

Ans. (3)
Sol. As in $\mathrm{H}_{3} \mathrm{PO}_{4}$ Phosphorous is present it's maximum oxidation number state hence it cannot act as reducing agent.
9. First lonisation energy of Be is higher than that of Boron.

Select the correct statements regarding this
(i) It is easier to extract electron from $2 p$ orbital than 2 s orbital
(ii) Penetration power of $2 s$ orbital is greater than $2 p$ orbital
(iii) Shielding of $2 p$ electron by 2 s electron
(iv) Radius of Boron atom is larger than that of Be
(1) (i), (ii), (iii), (iv)
(2) (i), (iii), (iv)
(3) (ii), (iii), (iv)
(4) (i), (ii), (iii)

Ans. (4)
Sol. Theory Based.
10. $[\mathrm{PdFClBrI}]^{2-}$ Number of Geometrical Isomers $=\mathrm{n}$. For $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{n-6}$, Determine the spin only magnetic moment and CFSE (lgnore the pairing energy)
(1) 1.73 B.M., $-2 \Delta_{0}$
(2) 2.84 B.M., $-1.6 \Delta_{0}$
(3) $0,-1.6 \Delta_{0}$
(4) 5.92 B.M., $-2.4 \Delta_{0}$

Ans. (1)
Sol. Number of Geometrical Isomers in square planar [PdFCIBrI] ${ }^{2-}$ are $=3$
Hence, $\mathrm{n}=3$
$\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$
$\mathrm{Fe}^{3+}=3 \mathrm{~d}^{5}$, According to CFT configuration is $t_{2 g}^{221} e_{g}^{00}$
$\mu=\sqrt{n(n+2)}=1.73$ B.M.
CFSE $=-0.4 \Delta_{0} \times n t_{2 g}+0.6 \Delta_{0} \times n_{\text {eg }}$
$=-0.4 \Delta_{0} \times 5=-2.0 \Delta_{0}$
11. A can reduce BO_{2} under which conditions.

(1) $>1400^{\circ} \mathrm{C}$
(2) $<1400^{\circ} \mathrm{C}$
(3) $>1200^{\circ} \mathrm{C}$ and $<1400^{\circ} \mathrm{C}$
(4) $<1200^{\circ} \mathrm{C}$

Ans. (1)
Sol. $\quad \mathrm{A}+\mathrm{BO}_{2} \longrightarrow \mathrm{~B}+\mathrm{AO}_{2}$
$\Delta \mathrm{G}=-\mathrm{ve}$
Only above $1400^{\circ} \mathrm{C}$
12. $A \longrightarrow B 700 \mathrm{~K}$
$A \xrightarrow{C} B 500 \mathrm{~K}$
Rate of reaction in absence of catalyst at 700 K is same as in presence of catalyst at 500 K . If catalyst decreases activation energy barrier by $30 \mathrm{~kJ} / \mathrm{mole}$, determine activation energy in presence of catalyst.
(Assume 'A' factor to be same in both cases)
(1) 75 kJ
(2) 135 kJ
(3) 105 kJ
(4) 125 kJ

Ans. (1)
Sol. $\quad K_{c a t}=K$
$A e^{-\frac{E a_{1}}{R T_{1}}}=A e^{-\frac{E a_{2}}{R T_{2}}}$
$\frac{E a_{1}}{T_{1}}=\frac{\mathrm{Ea}_{2}}{\mathrm{~T}_{2}} \quad \mathrm{Ea}_{1}=\mathrm{Ea}_{2}-30$
$\frac{E a_{2}-30}{500}=\frac{E a_{2}}{700}$
$5 \mathrm{Ea}_{2}=7 \mathrm{Ea}_{2}-210$
$\mathrm{Ea}_{2}=\frac{210}{2}=105 \mathrm{~kJ} / \mathrm{mole}$
Activation energy of the catalysed reaction $=105-30=75 \mathrm{~kJ} / \mathrm{mole}$
13. A substance ' X ' having low melting point, does not conduct electricity in both solid and liquid state. ' X ' can be :
(1) Hg
(2) ZnS
(3) SiC
(4) CCl_{4}

Ans. (4)
Sol. $\mathrm{CCl}_{4} \rightarrow$ Non-conductor in solid and liquid phase.
14.

The major product for above sequence of reaction is:
(1)

(2)

(3)

(4)

Ans. (2)

Sol.

15. Which of the following can give highest yield in Friedel craft reaction?
(1)

(2)

(3)

(4)

Ans. (2)
Sol. Aniline form anilinium complex with lewis acid so phenol is most reactive among the given compounds for electrophilic substitution reaction.
16.

What will be the major product?
(1)

(2)

(3)

(4)

Ans. (1)

Sol.

17. Which of the following is correct order for heat of combustion?
(A)

(B)

(C)

(1) C $>$ B $>A$
(2) A $>$ B $>$ C
(3) B $>$ A $>$ C
(4) C $>$ A $>$ B

Ans. (1)
Sol. In isomers of hydrocarbon heat of combustion depends upon their stabilities.
As the stability increases heat of combustion decreases.
Stability order

18. Write the correct order of basicity.

$\overline{\mathrm{C}} \mathrm{H}_{3}$
$: \overline{\mathrm{C}} \equiv \mathrm{N}:$
$\mathrm{CH}_{2}=\mathrm{CH}-\overline{\mathrm{C}} \mathrm{H}_{2}$
$\overline{\mathrm{C}} \equiv \mathrm{CH}$
(a)
(b)
(c)
(d)
(1) a $>$ b $>$ d $>$ e $>$ c
(2) a $>$ b $>$ e $>$ d $>$ c
(3) b $>$ a $>d>c>e$
(4) $c>e>d>b>a$
(e)

Ans. (1)
Sol. Basicity is inversely proportional to electronegativity.
19. A, B, C and D are four artificial sweetners.
(i) $A \& D$ give positive test with ninhydrin.
(ii) C form precipitate with AgNO_{3} in the lassaigne extract of the sugar.
(iii) B \& D give positive test with sodium nitroprusside.

Correct option is:'
(1) A - Saccharine, B - Aspartame, C - Sucralose, D - Alitame
(2) A - Aspartame, B - Saccharine, C - Sucralose, D - Alitame
(3) A - Saccharine, B - Aspartame, C - Alitame , D - Sucralose
(4) A - Aspartame, B - Sucralose, C - Saccharine, D - Alitame

Ans. (2)

Sol.

C - Sucralose

D - Alitame

(i) A \& D give positive test with ninhydrin because both have free carboxylic and amine groups.
(ii) C form precipitate with AgNO_{3} in the lassaigne extract of the sugar because it has chlorine atoms.
(iii) $B \& D$ give positive test with sodium nitroprusside because both have sulphur atoms.
20. Compound (P) (P gives
 lodoform test)
(3) Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}+\Delta$

Predict the compound (P) on the basis of above sequence of the reactions?
Where compound (P) gives positive lodoform test.
(1)

(2)

(3)

(4)

Ans. (2)
Sol.

SECTION - 2 : (Maximum Marks : 20)

* This section contains FIVE (05) questions. The answer to each question is NUMERICAL VALUE with two digit integer and decimal upto one digit.
* If the numerical value has more than two decimal places truncate/round-off the value upto TWO decimal places.
$>\quad$ Full Marks : +4 If ONLY the correct option is chosen.
$>\quad$ Zero Marks: $\mathbf{0}$ In all other cases

21. Given a solution of HNO_{3} of density $1.4 \mathrm{~g} / \mathrm{mL}$ and $63 \% \mathrm{w} / \mathrm{w}$. Determine molarity of HNO_{3} solution.

Ans. 14.00
Sol. $63 \% \mathrm{w} / \mathrm{w} \longrightarrow \mathrm{HNO}_{3}$ solution
$M=\frac{63 \times 1.4}{63 \times 100} \times 1000 \mathrm{~mole} / \mathrm{L}$
$M=14 \mathrm{~mole} / \mathrm{L}$
22. Determine degree of hardness in term of ppm of CaCO_{3} of 10^{-3} molar $\mathrm{MgSO}_{4}(\mathrm{aq})$.

Ans. 100.00
Sol. 10^{-3} molar $\mathrm{MgSO}_{4} \equiv 10^{-3}$ moles of MgSO_{4} present in 1 L solutions.
$\mathrm{n}_{\mathrm{CaCO}_{3}} \equiv \mathrm{n}_{\mathrm{MgSO}_{4}}$
$\mathrm{ppm}_{\left(\text {(in term of } \mathrm{CaCO}_{3}\right)}=\frac{10^{-3} \times 100}{1000} \times 10^{6}$
$\mathrm{ppm}_{\left(\text {in term of } \mathrm{CaCO}_{3}\right)}=100 \mathrm{ppm}$
23. Determine the amount of NaCl to be dissolved in $600 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ to decrease the freezing point by $0.2^{\circ} \mathrm{C}$

Given : k_{f} of $\mathrm{H}_{2} \mathrm{O}=2 \mathrm{k}-\mathrm{m}^{-1}$
density of $\mathrm{H}_{2} \mathrm{O}(\ell)=1 \mathrm{~g} / \mathrm{ml}$
Ans. 01.76
Sol. $\Delta T_{f}=0.2^{\circ} \mathrm{C}$
$\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{ik} \mathrm{k}_{\mathrm{f}} \mathrm{m}$
$0.2=2 \times 2 \times \frac{\omega}{58.5} \times i \frac{1000}{600}$
$\omega=\frac{0.2 \times 58.5 \times 600}{1000 \times 4}$
$=\frac{1.2 \times 58.5}{40}=01.76 \mathrm{~g}$
24. On passing a particular amount of electricity in AgNO_{3} solution, 108 g of Ag is deposited. What will be the volume of $\mathrm{O}_{2}(\mathrm{~g})$ in litre liberated at 1 bar, 273 k by same quantity of electricity?
Ans. 05.68
Sol. $\quad\left(n_{A g}\right)_{\text {deposit }}=\frac{108}{108}-1$ mole
$\mathrm{Ag}^{+}+\mathrm{e}^{-} \longrightarrow \mathrm{Ag}$
1 F charge is required to deposit 1 mole of Ag
$\mathrm{H}_{2} \mathrm{O} \longrightarrow \frac{1}{2} \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-}$
2F charge deposit $\longrightarrow \frac{1}{2}$ mole
1F charge will deposit $\longrightarrow \frac{1}{4}$ mole
$V_{O_{2}}=\frac{n R T}{P}$
$=\frac{1}{4} \times \frac{0.08314 \times 273}{1}$
$=\frac{1}{4} \times 22.7$
$v_{o_{2}}=5.675 \mathrm{~L}$
25. Find percentage nitrogen by mass in Histamine?

Ans. 37.84

Sol. Structure of Histamine is

Molecular formula of Histamine is $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{~N}_{3}$
Molecular mass of Histamine is 111
Percentage nitrogen by mass in Histamine $=\frac{42}{111} \times 100=37.84$

